The local partial autocorrelation function and some applications
نویسندگان
چکیده
منابع مشابه
ساختار کلاسهایی از حلقه های z- موضعی و c- موضعی the structure of some classes of z-local and c-local rings
فرض کنیمr یک حلقه تعویض پذیر ویکدار موضعی باشدو(j(r رایکال جیکوبسن r و(z(r مجموعه مقسوم علیه های صفر حلقه r باشد.گوییم r یک حلقه z- موضعی است هرگاه j(r)^2=. .همچنین برای یک حلقه تعویض پذیر r فرض کنیم c یک عنصر ناصفر از (z( r باشد با این خاصیت که cz( r)=0 گوییم حلقه موضعی r یک حلقه c - موضعی است هرگاه و{0 و z(r)^2={cو z(r)^3=0, نیز xz( r)=0 نتیجه دهد که x عضو {c,0 } است. در این پایان نامه ساخ...
Estimating the di!erencing parameter via the partial autocorrelation function
This paper provides an explanation for the puzzling phenomenon in Tieslau et al. (1996, Journal of Econometrics 71, 249}264) that a substantial e$ciency loss occurs if low-order autocorrelations are omitted when estimating the di!erencing parameter, d. This is because for all n strictly bigger than 1, the nth-order autocorrelation function does not depend uniquely on the di!erencing parameter. ...
متن کاملAr and Ma Representation of Partial Autocorrelation Functions, with Applications
We prove a representation of the partial autocorrelation function (PACF), or the Verblunsky coefficients, of a stationary process in terms of the AR and MA coefficients. We apply it to show the asymptotic behaviour of the PACF. We also propose a new definition of short and long memory in terms of the PACF.
متن کاملCharacterization of the Partial Autocorrelation Function of Nonstationary
The second order properties of a process are usually characterized by the autocovariance function. In the stationary case, the parameterization by the partial autocorrelation function is relatively recent. We extend this parameterization to the nonstationary case. The advantage of this function is that it is subject to very simple constraints in comparison with the autocovariance function which...
متن کاملCharacterization of the partial autocorrelation function of nonstationary time series
The second order properties of a process are usually characterized by the autocovariance function. In the stationary case, the parameterization by the partial autocorrelation function is relatively recent. We extend this parameterization to the nonstationary case. The advantage of this function is that it is subject to very simple constraints in comparison with the autocovariance function which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2020
ISSN: 1935-7524
DOI: 10.1214/20-ejs1748